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Abstract
The lifecycle of Android apps is dynamically managed by the

system in an ad hocmanner, which leads to apps’ abusing life-

cycle entry points to automatically start up and gaming the

priority-based memory management mechanism to evade

being killed. Such apps exhibit diehard behaviors that keep
them long-running in the background, resulting in excessive

battery consumption and device performance degradation.

Existing battery-saving features are far from being effective

in restricting diehard behaviors, due to the lack of systematic,

fine-grained control of app lifecycle.

In this paper, we propose the Application Lifecycle Graph

(ALG), a holistic modeling of system-wide app lifecycle. We

present a lightweight runtime framework that builds ALG

and utilizes it to realize fine-grained lifecycle control of apps.

The framework exposes APIs that provide ALG information

and lifecycle control capabilities to developers and device

vendors, empowering them to leverage the framework to

implement rich functionalities. Evaluation results show that

the proposed framework is competent and incurs low per-

formance overhead. It introduces 4.5MB additional memory

usage on average, and approximately 5% and 0.2% CPU usage

during system booting and at idle state.

CCS Concepts • Software and its engineering → Dy-
namic analysis;Operating systems; Software performance.

Keywords Mobile application analysis, Application behav-

iors, Lifecycle management, Runtime monitoring

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00

https://doi.org/10.1145/3302424.3303956

ACM Reference Format:
Yuru Shao, Ruowen Wang, Xun Chen, Ahemd M. Azab, and Z.

Morley Mao. 2019. A Lightweight Framework for Fine-Grained

Lifecycle Control of Android Applications . In Fourteenth EuroSys
Conference 2019 (EuroSys ’19), March 25–28, 2019, Dresden, Germany.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3302424.
3303956

1 Introduction
Mobile app lifecycle is dynamically managed by the system

and is opaque to users. Due to the constrained resources

on mobile devices, the Android system controls each app’s

lifecycle based on their demands and task priorities. In partic-

ular, Android imposes looser restrictions on app lifecycle and

allows background execution without user awareness. On

the one hand, Android’s permissive lifecycle control gives

apps more flexibility to react to user interactions and system

events timely, and thus enables rich functionalities, such as

background video recording. On the other hand, however, it

also opens doors for apps to directly or indirectly alter their

lifecycles. In fact, apps can easily abuse their entry points to

automatically start up in the background, requiring no user

interaction, and game the lifecycle management mechanism

to evade being killed.

We call app behaviors that make changes to their lifecycles

for the purpose of 1) keeping long-running in the background

or 2) evading being killed diehard behaviors. Apps exhibiting
such diehard behaviors are thus diehard apps. Diehard apps

can cause battery drain and device performance degrada-

tion. Since they are oftentimes completely invisible while

running in the background, it is hard for normal users to be

aware of their existence and what they are actually doing.

It is reported that the Amazon Shopping app operates in

the background so that it remains up to date with current

offers and promotions, causing high battery usage [24]. Peo-

ple also have privacy concerns on such apps, as they could

stealthily and constantly collect sensitive user data, such as

geolocations [13, 16, 37].

Essentially, diehard apps exploit two fundamental prob-

lems in Android app lifecycle. First, apps can have multiple

entry points that are by default accessible to other apps on

https://doi.org/10.1145/3302424.3303956
https://doi.org/10.1145/3302424.3303956
https://doi.org/10.1145/3302424.3303956


EuroSys ’19, March 25–28, 2019, Dresden, Germany Y. Shao et al.

Table 1. The changes cause lifecycle fragmentation, i.e., an app’s lifecycle is inconsistent in different Android frameworks.

Android version Improvements Diehard techniques affected

Marshmallow (6.0) Doze, App Standby Alarm Manager, Long-lived TCP connections

Nougat (7.0) Fixing notification bug, Doze on the go, Background Optimization Hiding notifications

Oreo (8.0) Job scheduler improvements, Background Execution Limitation Static broadcast receivers

Pie (9.0) Background Restrictions Foreground services

1 // full class name: com.android.Laucher.Se
2 public class Se extends Service {
3 ...
4 // onDestroy() callback is always called by
5 // the system when a service gets killed
6 public void onDestroy() {
7 super.onDestroy();
8 ...
9 // Restart itself (the 2nd argument is the
10 // target service that will be started).
11 Intent i = new Intent(this.context, Se.class);
12 i.setFlags(268435456);
13 i.setAction("com.dai.action");
14 i.setAction("com.tdz.action");
15 this.startService(i);
16 }
17 ...
18 }

Figure 1. Code snippet of the HummingBad malware, de-

compiled by JEB Decompiler. The target of the intent object

(local variable i) is set to Se.class, meaning that the service

attempts to restart itself while being killed.

the same device. In addition to the user starting an app ex-

plicitly, the app can be launched by the system or another

app as well, requiring no user involvement. For example,

the system broadcasts signal strength changes so that apps

potentially affected by weak signal strength can take actions

accordingly. A diehard app, however, can also claim to han-

dle the event and it will be automatically launched by the

system to process signal changes. Second, and more impor-

tantly, app lifecycle is not strictly enforced and is hard to

enforce. The lifetime of an app process is determined by the

system through a combination of the parts of the app that

the system knows are running, how important these things

are to the user, and how much overall memory is available

in the system [17]. Since apps are a sophisticated interplay

between custom code and the system framework, they are

able to game the system to indirectly manipulate their own

lifecycle states. For instance, apps with foreground services

are believed to have higher priorities. Knowing this, diehard

apps usually start foreground services to escalate their prior-

ities even though it is not a necessary functionality for them.

Moreover, apps can directly alter their component lifecy-

cle. App components implement a series of callbacks which

are invoked by the system through its lifetime, but there

is no limitation on what they can do inside each callback.

Malicious apps have been exploiting the loosely enforced

app lifecycle to be diehard, e.g., the notorious HummingBad

malware. As Figure 1 shows, when its service gets killed, it

attempts to restart the service immediately. Not all develop-

ers are well educated or are willing to follow the guidelines.

They get things done in ways they see fit, sometimes causing

diehard behaviors unintentionally.

New but ad hoc features (summarized in Table 1) have

been introduced to Android in an effort to limit background

apps, for example, background optimization [8], Doze, and

App Standby [15]. They affect diehard behaviors to a cer-

tain extent, but unfortunately, they cannot fundamentally

solve the diehard behavior problem and they all have ob-

vious limitations. First, there are legitimate cases where

apps need to keep running in the background, but Back-

ground Optimization and Background Execution Limitation

are both too coarse-grained, either allowing or disallowing

all background activities. It is difficult to balance the trade-

off between app functionality and user experience. For end

users, neither zero control or excessively strict control is

helpful. Second, apps can always find “creative” ways to

bypass background restrictions. Diehard techniques evolve

along with the Android framework. For example, developers

have come up with approaches to escalating process priority

so that their apps will not be killed when available memory is

low [25]. Malware variants use social engineering to bypass a

battery-saving process and stay active in the background [3].

We acknowledge that certain apps may have legitimate

reasons for being diehard. However, they should complywith

system regulations and development guidelines for providing

the best user experience. We argue that diehard behaviors

violate the system’s app lifecycle control and they should be

better managed. Comprehensive modeling of app lifecycle

which can enable fine-grained lifecycle control is desired.

In view of this need, we make the first effort towards

providing fine-grained control of app lifecycle. In particu-

lar, we categorize diehard techniques that are used by apps

to keep long-running, from which we learn a valuable in-

sight that diehard apps create high-priority app components

and/or develop interdependence between component call-

backs, between app components, or between other apps. The

complicated app lifecycle makes it challenging to realize reli-

able, systematic detection and restriction. To tackle this, we
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propose application lifecycle graph (ALG), a systematic, infor-

mative, and precise description of app lifecycle. The problem

of diehard behavior detection thus can be transformed into

operations on a directed graph (i.e., the ALG). Specifically,
the interdependence created by diehard apps can be iden-

tified as cycles, and diehard behaviors are reflected on the

ALG as edges with special properties. Leveraging ALG, we

develop a lightweight framework that enables flexible and

fine-grained app lifecycle enforcement at runtime.We collect

and analyze 17,598 apps from Google Play and a third-party

app market. Results show that diehard behaviors are very

common among apps. To our surprise, diehard behaviors

sometimes come from third-party libraries an app integrates,

making the host app a diehard parasite.

In summary, this paper makes the following contributions:

• We propose app lifecycle graph (ALG), a fine-grained,

precise description of system-wide app lifecycle. ALG

allows us to transform diehard behavior detection and

restriction problems into efficient graph-based opera-

tions, i.e., cycle detection and edge pruning.

• Leveraging ALG, we design and implement a light-

weight runtime framework for fine-grained control of

app lifecycle. This framework enables the development

of new functionalities in app lifecycle management by

exposing a set of easy-to-use APIs.

• We perform the first study on diehard behaviors in

the wild. We find that diehard behaviors are com-

mon among apps from both Google Play and a third-

party app market. One interesting observation is that

app developers may not intentionally make their apps

diehard, but the third-party libraries they integrate

have diehard behaviors.

2 Background and Motivation
We first introduce background to app lifecycle management

on Android. We then use real-world examples to demon-

strate the limitations of existing app lifecycle management

mechanism as our motivation.

2.1 Component Lifecycle
Components are the essential building blocks of Android

apps. There are four types of components that can be used

within an app, i.e., Activity, Service, Broadcast Receiver, and
Content Provider. Each type of component has its distinct

lifecycle. A component transitions through different lifecycle

states during an app’s execution and the framework calls

its lifecycle callbacks [7] at each state change. It is the de-

velopers’ responsibility to define how a component behaves

in response to lifecycle state changes. For example, while a

Service is being created, its onCreate() is called. Developers
override the default callbacks, but there is no restriction on

what they can do in each lifecycle callback. An app’s lifecy-

cle is far more complicated than the aggregation of all its

components’ lifecycles, because there exist control flows and

data flows among components.

Inter-component communications (ICCs) occur both

within individual apps and between different apps. ICC relies

primarily on the exchange of asynchronous messages called

Intents, which can carry extra data in the form of key-value

pairs. The ICC initiator creates an Intent instance and puts

into it the target component information. ICCs enable com-

plicated collaborations across apps. For instance, the camera

app allows users to share photos on social media conve-

niently, by sending an Intent object with photo information

to the social app. If the target app is not running, the system

starts it so that desired operations can be completed. Because

of this design, an app can wake up other apps through ICC.

2.2 Memory Management
By design, Android does not immediately kill app processes

when they are switched to the background. They are cached

in the background so that they can be quickly recovered

when the user switches back. In this way, the system can

speed up reopening apps if needed, but it also easily gets

into a low free memory state, where it has to shut down cer-

tain processes in order to provide memory to processes that

are more immediately serving the user [18]. If an app pro-

cess gets killed, all components residing in that process are

consequently destroyed. When deciding which processes to

kill, the system weighs their relative importance to the user.

For example, it more readily shuts down a process hosting

activities that are no longer visible on screen, compared to a

process hosting visible activities. The decision of whether

to terminate a process, therefore, depends on the states of

the components in that process. The system uses Activity

Manager Service to track the importance of processes and re-

flect their importance by setting the oom_adj (latest kernels

use oom_score_adj) value of the process under /proc/PID/.
The higher the oom_adj value is, the more likely this pro-

cess gets selected by the kernel’s low memory killer (LMK).

Since a process may host multiple components at a time and

priorities are per process, the state of one single component

can affect the entire process’s priority.

App components have their individual lifecycles, but the

call graph of callbacks is incapable of describing an app’s

complete lifecycle. First, in addition to component callbacks,

frequent ICCs are also part of app lifecycle. Second, an app

can wake up another app when inter-process communica-

tions (IPC) occur. In fact, fragmentation aggravates the prob-

lem, as not all devices can be upgraded to the latest ver-

sion. As of September 15th, 2018, 13 months after Android

Oreo was released, 85.4% devices are still running older ver-

sions [10]. Device vendors such as Huawei customize An-

droid and add their own power-saving features. However,

they impose overly strict restrictions that blindly block all

app background activities.
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3 Understanding Diehard Behaviors
A comprehensive understanding of diehard behaviors can

provide us insights on designing fine-grained app lifecycle

control. We collect cases from popular user forums [2, 4,

5] and well-known developer sites [22, 26]. We manually

analyze 23 diehard apps reported by users and thoroughly

inspect the techniques discussed among developers.

A key insight we learn from the analysis of existing tech-

niques is that diehard apps create high-priority app compo-
nents and/or develop interdependence between component call-
backs, between app components, or between other apps.

3.1 Escalating Process Priority
To evade being killed, apps attempt to trick the system into

believing they are important to serving the user. As a result,

their process priorities will be escalated.

Foreground service. Normally, apps are put into the back-

groundwhen the user goes back to the home screen or switch

to another app. Android, however, allows apps to start fore-

ground services in which continuous tasks (e.g., music play-

ing, file downloading) will not be interrupted even the user

is not currently using the app. Foreground services have

much higher priority and therefore they will not be easily

killed. This feature has been widely abused. Apps can sim-

ply call startForeground(int, Notification) to turn a

background service into foreground state. The system con-

siders foreground services to be user-aware and thus not

candidates for killing even under heavy memory pressure.

Before Android N there are bugs in displaying notifications,

which are exploited to start foreground services stealthily

without user awareness.

Floating view. Apps can keep a tiny, invisible floating view

in the foreground, abusing the SYSTEM_ALERT_WINDOW per-
mission. It is a known problem that this permission allows

an app to draw overlays on top of other apps, and it is auto-

matically granted for apps installed from Google Play [30].

Native process. Apps are allowed to run native executa-

bles using java.lang.Runtime.exec() APIs outside the

app processes. Unlike app processes in the Android run-

time, native processes are out of the control of the Android

framework’s memory management. They by default have

higher priority, especially when they run as daemons. The

native processes may not be used to perform complicated

tasks but rather to guard certain app components.

3.2 Auto-run
Apps utilize auto-run techniques in order to automatically

start up after reboots and restart themselves after being killed.

Different from escalating process priority, auto-run behav-

iors create interdependence between apps or between an

app and the system. Even if the user uses task management

tools [1, 11] to kill background apps, diehard apps can still

manage to restart with auto-run.

Sticky service. A service makes itself “sticky” by return-

ing START_STICKY from its onStartCommand() callback. A
sticky service, if uses no other diehard techniques, will be

recycled by the system when available memory is low. How-

ever, the system recreates the sticky service once it gets out

of the low-memory state.

Listening to system events. The system sends out broad-

casts when certain events occur. Apps that are interested

in specific events get notified if they have registered cor-

responding broadcast receivers. For example, SIG_STR is

broadcasted out when signal strength changes, and an app

listening to this broadcast will be awakened. When a receiver

is registered in the manifest and the app is not running, a new

process will be created to handle the broadcast. This gives

the app the chances to start other components thereafter.

Watchdog. A watchdog process is used to monitor the pro-

cess that needs to keep alive. If the process being watched

is dead, the watchdog restarts it immediately. Watchdog

processes are usually implemented as native processes, and

there are several ways to monitor another process’ state

(i.e., running or dead). For example, the watchdog could be

a native daemon which establishes a local socket channel

with the app process [34]. If the socket channel is somehow

broken, it means the app process is dead. In this case, the

native daemon tries to restart the app process immediately.

Abusing account synchronization. Apps are allowed to

create a sync adapter component that encapsulates the code

for the tasks that transfer data between the device and a

server. Based on the scheduling and trigger provided, An-

droid’s sync framework runs the code in the sync adapter

component (no matter the app is running or not), fromwhich

other components of the app can be started.

Scheduled tasks. AlarmManager allows scheduling an app

to be run at some specific point in the future, even if the app

is not currently running. JobScheduler first became available

in Android 5.0. Apps register jobs, specify their requirements

for network and timing. The system then schedules the jobs

to execute at the appropriate times. Both AlarmManager

and JobScheduler are abused by apps to realize auto-run.

Observables can also be used to set up periodically tasks.

Cross-app wakeup.Apps developed by the same developer

and apps integrating the same SDK can work together to

keep long-running. For example, all Baidu apps have the

same ShareService which periodically looks up other Baidu

apps installed on the device and tries to bind to them. Since

the system starts the target app for completing inter-app

ICCs, one running Baidu app can thus wake up all other

Baidu apps that are not running.

Explicitly invoking lifecycle callbacks. The systemman-

ages app component lifecycle. Different callbacks are invoked

by the framework at each stage of an app component. For

example, when the system destroys a service, onDestroy is
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called. The purpose is to give apps an opportunity to save

running states and die gracefully. Apps are able to override

these callbacks. They can thus abuse them by explicitly call-

ing onStart() inside onStop() so that the component will

not finish. The behavior shown in Figure 1 adds an edge to

the lifecycle, creating a cycle.

4 Fine-Grained Lifecycle Control
Based on the insight we learn from diehard apps and their

behaviors, we believe that in an appropriate graph represen-

tation, high-priority components can be identified as special

nodes and the interdependence can be captured as cycles.

We propose the Application Lifecycle Graph (ALG) to accu-

rately describe apps’ lifecycles as a whole in a fine-grained

manner. Diehard behaviors are reflected on the ALG as ei-

ther edges with particular properties, or cycles indicating the

interdependencies between apps, app components, or com-

ponent callbacks. The benefits of ALG are two-fold. First, it

can capture and record all app and system events (i.e., edges
on the graph) that affect lifecycle. Second, it allows us to

convert problems such as diehard behavior detection into

graph-based problems, i.e., cycle detection. We design a run-

time framework that utilizes ALG to dynamically track app

states and realize fine-grained lifecycle control, which over-

comes limitations of static analysis based approaches that

lack efficiency, scalability, and extensibility. The framework

also exposes the ALG and lifecycle control capabilities as

a set of APIs in order to facilitate the development of new

functionalities.

4.1 Application Lifecycle Graph (ALG)
ALG models lifecycles of all installed apps in three layers.

From the higher level to the lower level, they are (1) cross-

app ICC graph, (2) intra-app ICC graphs, and (3) component

callback graphs. We have

ALG = (Napp , Ecross−app−icc )

whereNapp is the node set and Ecross−app−icc is the edge set.

Each node represents an installed app: Napp = {Gapp0. . .n },

Gappi ,i ∈[0,n] is the intra-app ICC graph of app i . Each
edge represents a cross-app ICC event. We further define

Gappi = (Ncomp , Eintra−app−icc ), andNcomp is a set of nodes

representing app components: Ncomp = {Gappicomp0. . .m }.

The edge set, Eintra−app−icc , represents intra-app ICCs.

Gappicompj (i ∈ [0,n], j ∈ [0,m]) is the callback graph of

component j in app i . Nodes of a callback graph are callback

methods, while edges are call sequences of those callback

methods: Gappicompj = (Ncallback , Emethod−call ).

Figure 2 illustrates the ALG structure. The top level is

a graph consisting of apps (also the Android framework,

which will be discussed in §4.1.1) and cross-app ICCs. For

example, app0 starts app1 with a cross-app ICC. Each app

node is actually an intra-app ICC graph, whose nodes are

either app components or native binaries, and edges are

intra-app ICCs. For example, app0 has three components,

among which component0 starts component1 and component1
starts component2. Each component has a callback graph that

models its callback sequence.

app_0 

Android Framework

component_0

component_1

component_2

app_1 app_2 
… …

Cross-app ICC graph node

Inner-app ICC graph node

Callback graph node

Inner-app ICC

Cross-app ICC

Figure 2. An ALG illustration. The Android framework is

represented as a special node in the same level as apps. Edges

have attributes that provide event contexts.

4.1.1 Abstract the Android Framework
The entire Android framework is abstracted into an app node

in ALG, although the Android framework consists of a num-

ber of different packages and system services distributed

into multiple processes. The rationale behind this abstrac-

tion is that from the apps’ perspective, ICCs between the

framework have no difference compared to cross-app ICCs.

Apps may interact with different system services during

their lifetime. For instance, as described in §3, apps register

their components to the framework, and the framework will

start those registered components when required conditions

are met. There are also many built-in system apps that nor-

mal apps can communicate with. Aggregating framework

packages into one single node reduces graph complexity by

eliminating unnecessary nodes and edges, and significantly

speeds up operations on the ALG. Meanwhile, system ser-

vices and system apps are critical to normal functioning of

the system; they are out of the scope of our fine-grained

lifecycle control. This abstraction does not have a negative

impact on the precision of the ALG.

4.1.2 Lifecycle Event Context
Edges in ALG represent lifecycle-related events. We provide

event context as edge attributes. We consider the four cate-

gories of attributes: (1) User interaction, i.e., whether or not
an app or a component is initiated by the user is an impor-

tant factor for determining the legitimacy; (2) Frequency, i.e.,
the frequency of an ICC event indicates how aggressive an

app is in terms of being diehard; (3) ICC type, including app

status (i.e., foreground or background), triggering method

call (e.g., startActivity, bindService); and (4) Status, i.e.,
enabled or disabled, for enforcing lifecycle control policies.

For example, in Figure 3, ICC edges provide information on
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how a component is started, and what shell command is

executed to start a native component. Similarly, in Figure 4,

cross-app ICC edges have information on the interactions

between apps and the Android framework.

DiehardService

WatchdogDaemon

Start daemon
Runtime.exec(“/path/to/daemon”)

Start service
execl(“am start …”)

WatchdogService

Start/bind service Start/bind service

Figure 3. Partial ALG: intra-app ICC graph for an app having

watchdog component. Irrelevant ALG parts are omitted.

Android Framework

JobService

DiehardService

Register
JobService

Periodically start
JobService

SyncService

DiehardService

Register 
SyncService

Periodically start
SyncService

Figure 4. Partial ALG: cross-app ICC graph capturing sched-

uled task and account sync. Irrelevant ALG parts are omitted.

4.2 Fine-grained Lifecycle Control
To realize fine-grained, component-level app lifecycle con-

trol, we propose a lightweight runtime framework that builds

ALG on-the-fly and exposes APIs to support the develop-

ment of new functionalities. The advantage of a runtime

system is that it can capture genuine runtime information,

thus ensure accuracy, although performance overhead is in-

evitable and completeness cannot be guaranteed. Pure static

app code analysis can gather relatively comprehensive app

behaviors, but it is not precise due to the lack of source code

and its inherent limitations that cause over-approximation,

e.g., points-to analysis [27]. The design of the framework

must satisfy the following requirements.

1. Non-blocking monitoring. To reduce app perceived

delay, we must not block app executions. This brings

challenges in placing hooks in the Android framework

for collecting runtime information.

2. ALG accuracy. Our lifecycle control framework relies

heavily on the ALG. An accurate ALG is the foundation

of new functionalities developed on it. However, there

is no existing mechanism in the Android framework

to support ICC caller component identification. In fact,

very limited caller information is available, including

only app UID, PID, and package name.

3. Nondisruptive control. If an app or an app component

is being restricted, we need to gracefully shut it down,

without causing crashes that will be perceived by the

user.

Lifecycle manager 

service (LMS)

Lifecycle hooks

Client

System services

… ……

ALG

Context 

collector
Lifecycle control

interfaces

Async
messages

…

Figure 5. Overview of the framework. There could be mul-

tiple client apps that use the lifecycle control APIs.

Figure 5 depicts the architecture of our proposed frame-

work. We add a system service, Lifecycle Manager Service

(LMS), into the Android framework to maintain an ALG at

runtime. To collect runtime lifecycle information we place

various hooks into existing system services such as Activity

Manager Service and Job Service. All hooks report collected

data to LMS, which updates the ALG accordingly. Meanwhile,

LMS exposes a set of APIs that provide the ALG and fine-

grained lifecycle control capabilities to apps. We overcome

the challenge of accurately identifying caller component of

an ICC using a Context Collector (§4.2.2). These interfaces

enable various use cases. System-level developers (e.g., de-
vice vendors) can leverage them to restrict diehard behaviors.

Developers of task manager apps and battery saver tools can

use the interfaces to better manage running tasks and to

implement more effective battery saving policies.

4.2.1 Lifecycle Manager Service (LMS) and Hooks
LMS works with lifecycle hooks to build and maintain the

ALG. Hooks are placed into several system services for col-

lecting runtime app lifecycle information and controlling

lifecycle events. We choose to hook services instead of app

logics for two reasons. First, Android adopts a client-server

model where apps send their requests to handling services.

For example, ICCs are eventually executed by Activity Man-

ager Service, which acts like a switch that looks up the target

app and component, thus connects the caller and the target.

Placing hooks in services allows us to centralize monitoring

and enforcement logics so that we can keep minimal commu-

nication channels with LMS and therefore reduce overhead.

Second, we cannot trust information coming directly from

the apps, because apps have the capability of manipulating

its own memory and bypassing the hooks.
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Table 2. APIs provided by our framework for fine-grained app lifecycle control. Bundle objects are essentially key-value pairs.

They are used to update one or multiple edge/node properties at a time.

API Type Description

AppLifecycleGraph getLifecycleGraph() Sync Return a copy of ALG

AppCompGraph getAppCompGraph(String pkg) Sync Return an app component graph with given package name

CompCallbackGraph
getCompCallbackGraph(String pkg, String comp)

Sync Return callback graph of an app component

void setAppProperties(Bundle p) Async Set properties of an app node on the ALG

void setAppComponentProperties(Bundle p) Async Set properties of an app component

void setCrossAppEdgeProperties(Bundle p) Async Set properties of an cross-app ICC edge

void setIntraAppEdgeProperties(Bundle p) Async Set properties of an intra-app ICC edge

void setCompCallbackEdgeProperties(Bundle p) Async Set properties of component callback graph edge

For an operation that affects app lifecycle, there could be

many intermediate procedures (i.e., method calls) between

the API being called and the internal method that eventually

performs the intended operation. To balance overhead, accu-

racy, and extensibility, we must carefully choose appropriate

locations for installing hooks. In general, we have three dif-

ferent hook placement options, as illustrated in Figure 6.

Caller

Component

Activity Manager 

Service (AMS)

Start/bind service
clearCallerIdentity()

Caller context 

unavailable

Target

Component

❶

❷

Start target❸

Figure 6. Hook placement options during service launch-

ing/binding ICC. The identity of the caller app is completely

unavailable after the AMS calls clearCallerIdentity().

Close to the caller. If hooks are close to the caller, we

can more easily collect the calling app UID, PID, and

package name, as they are still available until the AMS

calls clearCallerIdentity. Nonetheless, not all lifecycle-
related operations can finally reach their targets, because

they could fail at any intermediate method calls. As a result,

we would collect false-positive ICCs and create ALG edges

that do not really exist.

Close to the target. Lifecycle hooks can also be placed close
to the target component. In this case, we would have very

accurate information about the target without additional ef-

forts. The downside is we lose the caller app and component

information completely.

Somewhere in-between. Placing hooks at certain points of
the intermediate method calls allows us to balance accuracy

and overhead. We can keep caller information before it gets

cleared, and reuse intermediate return values to obtain target

component identity. However, this option requires efforts

in understanding system services code, which may change

drastically across different Android versions. The cost of

maintenance is the highest.

We choose to place lifecycle hooks close to the target, as

our top goal is to ensure accuracy and eliminate false posi-

tives. The tradeoff is that we need to store caller information

before it is cleared. Evaluations in §5 show that the overhead

for this tradeoff is totally acceptable. Hooks could also be

placed at both the caller side and the target side, but this

would result in higher overhead.

4.2.2 Identify Caller Component
In Android’s client-server model of app-framework interac-

tions, apps are identified by their UID, PID, or package name,

which means system services see all components of an app as

a whole. The granularity of all access control mechanisms is

per app, not per app component. As for our lifecycle control

framework, we aim to achieve component-level granularity,

and the ALG requires caller component and target compo-

nent for each ICC. Identifying target component is trivial, but

accurate identification of caller component is challenging.

To overcome this challenge, we modify base app compo-

nent classes to attach caller component information automat-

ically, as illustrated in Figure 7. Since everything from the app

side could be manipulated by the app itself, we validate re-

ceived caller component information in LMS. Specifically, all

app components extend base classes from the Android SDK,

e.g., android.app.Service, android.app.Activity. We

add into base component classes a getIdentity() method

that returns class full name, including the package. Leverag-

ing the polymorphism feature of the Java language, calling

the method on concrete sub-class instances returns specific

component names. The whole process is completely trans-

parent to app and it requires no effort from app developers.

Everything coming from the app side cannot be trusted,

because apps have the capability to manipulate anything

in their own memory space. This means caller component

information from client side could be manipulated if the app

wants to bypass or trick our caller identification method. To



EuroSys ’19, March 25–28, 2019, Dresden, Germany Y. Shao et al.

Base Service 

(android.app.Server)

App Service

Activity Manager Service

Service launching intent

Service launching 
intent with caller info

Figure 7. Attaching caller component information (using

service as an example).

mitigate this potential problem, LMS validates caller com-

ponent information it receives. First, the caller component

must belong to the caller app, who can be identified by caller

UID or package name. Second, the caller component must

have been started already.

4.2.3 Nondisruptive Control
In addition to monitoring app lifecycle and building the ALG,

our framework provides fine-grained, component-level life-

cycle control. The idea is that lifecycle control policies can

be stored as ALG node and edge properties. For example, if

a service component is considered to be diehard we can sim-

ply set its enabled status to false, and let lifecycle hooks

enforce it. We cannot return an error or throw out an ex-

ception within the hooks, because the hooks have no idea

whether the caller app is able to properly handle the errors

or exceptions. To avoid crashing the caller app unexpectedly,

the hooks redirect ICCs to dummy components created by

LMS. Those dummy components only execute minimal code

and exit immediately.

4.2.4 Asynchronous Operations
To avoid hooks blocking the execution flow of apps, it is

important to reduce the running time of hooks. Considering

that hooks send ICC information to LMS and LMS takes time

to process it, we let all hooks send asynchronous messages to

LMS. The caller side (i.e., hook points) does not have to wait

for return values before proceeding. Moreover, whenever

there is an update on ALG, LMS client should be aware of

it. Instead of clients keeping polling ALG from LMS inter-

faces, LMS sends out a permission protected broadcast to

notify clients. The protected broadcast can only be received

by apps that have been granted the permission android.
permission.LIFECYCLE_UPDATES_ACCESS, and user con-

sent is required to grant an app this permission.

4.2.5 Exposed APIs
Table 2 lists a set of APIs that our framework provides to

clients. To protect them from being abused, we enforce

the permission android.permission.LIFECYCLE_GRAPH_

ACCESS. This permission also requires user consent in order

to be granted to an app. There are two categories of APIs

according to how results get returned, i.e., synchronous and
asynchronous APIs. The principle is that reading operations

are synchronous and writing operations are asynchronous.

In this way, the ALG obtained by clients are consistent with

the one in LMS, and updating ALG does not block the caller

components. The code snippet in Figure 8 shows how easy

it is to use the APIs to query different levels of graphs from

ALG and detect cycles.

void detectCycles() {
// detect cycles on component callback graph
for (app : installedApps) {
for (comp : getAppComponents(app)) {
callbackGraph =

lms.getCompCallbackGraph(app, comp);
bfs(callbackGraph);

}
}
// detect cycles on inner-app ICC graph
for (app : installedApps) {
compGraph = lms.getAppCompGraphs(app);
bfs(compGraph);

}
// detect cycles on cross-app ICC graph
bfs(lms.getLifecycleGraph);

}

Figure 8. Querying different levels of lifecycle graphs and
detecting cycles. Certain variable types are omitted. lms is a

reference pointing to the Lifecycle Manager Service.

5 Evaluations
We implement the proposed framework on Android Open

Source Project (AOSP) 8.0.0_r4 codebase and install it on a

Nexus 6P Android phone with 3GB memory. In this section,

we evaluate the accuracy of our approach to building ALG

and the performance of the fine-grained lifecycle control

framework. To demonstrate the usability and the capabilities

of the APIs, we showcase two example client apps. We also

present our findings based on the analysis of 17,598 apps

from Google Play and a third-party app market.

5.1 ALG Accuracy
We use analysis results of the apps described in §3 as ground

truth to evaluate ALG accuracy. Since the ALG is built from

runtime information collected by the hooks, there are no

false-positive ICCs. Our hook placement strategy ensures

accurate identification of ICC target components. The only

factor that could result in inaccuracy is our caller component

identification approach. In our experiments, the framework

captures 149 unique ICCs and accurately identifies all of their

caller components.
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Figure 9. system_server CPU and memory usage after device reboot.
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Figure 10. system_server CPU and memory usage while

repeatedly launching apps.

5.2 Overhead
Lifecycle hooks and LMS are integrated into the Android

framework, running in the system_server process. We com-

pare CPU and memory usages with the original AOSP build,

both have the same set of apps installed. At the very begin-

ning of device booting, the lifecycle control framework adds

approximately 5% CPU usage, as Figure 9 shows. This is rea-

sonable as the initialization of the LMS takes additional CPU

times. The difference becomes negligible after around 100

seconds, and the framework imposes only 0.15% additional

memory usage. Most of the additional memory is used for

storing the ALG at runtime, whose size is less than a few

megabytes, depending on the number of installed apps. This

is acceptable even on low-end devices with much less mem-

ory. We repeatedly launch an app for 560 times to measure

CPU and memory usages during app launches. Results are

shown in Figure 10. The framework incurs less than 20%

peak CPU usage, due to a high number of ALG updates. Still,

the memory usage difference is small.

We also evaluate app launch time and system boot time

with and without the proposed framework. We follow the

official recommendation on launch time performance mea-

surements [14]. Results are presented in Figure 11(a). The

median app launch time of AOSP is 363ms, while our frame-

work increases that by 93ms. This small change can be barely

noticed by users. We then reboot the device 100 times to mea-

sure system boot time. Results shown in Figure 11(b) suggest

that boot time increase is also insignificant. The median in-

creases from 28.345s to 30.932s. Figure 11(d) is the cumulative

distribution of time consumed at hooking points. 99% hooks

are executed within 2 millisecond.

5.3 API Usability
We implement two example client apps that leverage lifecycle

control APIs to (1) detect and report cycles on ALG and thus

detect diehard behavior and (2) restrict background ICCs

that launch apps without user interactions.

Leveraging event contexts provided by ALG as edge prop-

erties, we implement an app that demonstrates the effective-

ness of fine-grained lifecycle control, also using the inter-

faces provided by our framework. We enforce a policy that

prevents an invisible app component (no matter it is in the

background or foreground status) to launch inactive com-

ponents in other apps. We fully charge the device, reboot it,

and leave it for five hours without performing any opera-

tions on it. We measure battery level changes and battery

discharge rate every 10 minutes with the Battery Historian

tool [9]. Results in Figure 12 suggest that by the restriction

of diehard behaviors is effective. Battery life can be extended

significantly. Similar to CPU and memory usages after re-

boot, the discharge rate is higher with the framework at the

very beginning due to additional initialization efforts.

5.4 Diehard Apps in the Wild
To the best of our knowledge, there is no prior study on

diehard apps and their behaviors. To understand diehard

behaviors in the wild, we analyze a large number of apps

downloaded from Google Play and a third-party app market
1
.

Due to the lack of an update-to-date Google Play dataset
2
, we

choose to download Google Play’s top 500 best selling free

apps from each of the 29 categories
3
by ourselves. 11,339

were successfully downloaded in early June of 2018. We

1 http://www.appchina.com/. We choose this market for two reasons.

First, Google Play is inaccessible for Chinese users. Second, it is one of the

most popular 3rd-party markets according to Alexa Rank.

2
The popular PlayDrone app dataset [36] used in other work is very out-

dated (updated in Nov. 2014).

3
The category ANDROID_WEAR is excluded. Android wear apps are currently

not in the scope of our study.
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Figure 11. The comparison of app launch time and system boot between our framework and AOSP are shown in (a) and (b). (c)

shows the difference in ALG reading time with different numbers of apps installed on the device. The cumulative distribution

of hooks’ execution time is presented in (d).
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Figure 12. Battery life can be extended if diehard behaviors

are restricted.

also collect 6,259 best selling apps from the third-party app

market covering all its 15 categories, excluding duplicated

ones that also appear in Google Play. We first group apps

by their developers and then install apps in the same group

altogether. We use aapt to identify app user interfaces (i.e.,
Activity components), and use the command line tool am
to launch them, mimicking user interactions. App analysis

results show that diehard behaviors are common in both

Google Play apps and apps from the third-party market. We

also find diehard behaviors coming from widely used SDKs,

although some of the host apps are not intentionally diehard.

Table 3 lists the percentages of apps that use each diehard

technique. It is obvious that all diehard techniques except for

account sync are more widely used by apps from the third-

party market. Sticky service is the most prevalent among

apps from both app markets. The percentages of Google

Play apps having a floating view, native process, and explicit

callbacks are significantly lower than that of apps from the

third-party market. Figure 13 is the cumulative distribution

of numbers of diehard techniques apps use. 38% Google Play

apps have no diehard behaviors at all, while only 17% apps

from the third-party market are non-diehard. These numbers

clearly indicate that Google Play apps are less aggressive in

keeping themselves long-running.

Table 3. Percentage of apps that use each diehard technique.

Technique 3rd-Party Market Google Play

Foreground service 16.3% 13.1%

Native process 5.6% 1.0%

Floating activity 25.2% 9.3%

Sticky service 29.3% 25.1%

System events 19.4% 18.5%

Watchdog 7.3% 2.8%

Account sync 0.3% 0.3%

Inter-app wakeup 20.1% 17.5%

Scheduled tasks 0.9% 0.7%

Explicit callbacks 5.4% 1.8%
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Figure 13. Numbers of diehard techniques used by apps

from Google Play and the third-party market. Google Play

apps tend to use less diehard techniques.

5.4.1 Purposes of Being Diehard
We investigate the purposes of apps for being diehard. By

manually examining the ALG and reversing APKs, we clas-

sify diehard behavior purposes into the six categories. Results

are summarized in Table 4.

Sensor monitoring. Certain apps want to constantly moni-

tor system events and user activities. Since Android N, most

of the system broadcasts can only be received by dynami-

cally registered broadcast receivers. For example, apps are
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Table 4. Purposes of being diehard.

Purpose

# Apps

3rd-Party Market Google Play

Sensor monitoring 40 61

Ads/promotions 59 51

Push notification 1,192 124

Keyguard 84 75

Hot patching 48 39

Downloading/uploading 280 57

no longer able to receive screen lock events with a static

broadcast receiver. In order to monitor system events and

take actions accordingly, apps have to keep alive so that their

dynamic receivers are active. There are also apps constantly

sensing the ambient environment, e.g., lighting. Other exam-

ples include fitness apps that track user activities. They need

to keep long-running in the background, otherwise, their

would produce inaccurate results.

Displaying ads/promotions. A common business model

for app developers is to make profits from ads displayed

inside their apps. They usually keep an ad service running in

the background to retrieve ads and show them to users. Some

apps show promotion notifications from while running in

the background. Such apps would like to be diehard so that

they can maximize profits.

Push notifications. Google recommends Firebase Cloud

Message (FCM) for sending push notifications to devices

from the server side. However, FCM is not available in cer-

tain regions (e.g., China blocks Google services). The lack of

OS-level message push service leaves developers no choice

but to use third-party message push SDKs, or to implement

their own message push services. One major metric for eval-

uating the quality of message push services is the delivery

rate. To make sure push notifications can be delivered timely

and successfully, push services have to leverage diehard tech-

niques to keep themselves long-running in the background.

We observe apps coming with multiple push services, all

of which attempt to stay long-running in the background,

creating several diehard services.

Keyguard. Non-system apps are not allowed to replace

the lock screen. But apps can create UI components that

looks like a screen lock to users. In order to provide self-

implemented keyguard functionalities while the device is

locked, apps need a long-running service, which has to be

diehard so that it can provide the required functionalities.

Hot patching. Android allows apps to load and execute

dynamically at runtime. For example, they can download

plugins in the format of dex files and load them by user

demand. This feature is also used by some apps to realize

hot patching. Users do not need to reinstall the app anymore.

Instead, hot patching services can replace the out-dated code

by updating the corresponding dex file.

Downloading/uploading. Certain apps download data

from or upload local updates to their servers periodically.

They use a diehard service to prevent the downloading/u-

ploading process from being accidentally terminated. In fact,

the recommended approach to downloading and uploading

data is to use AsyncTask.

5.4.2 Third-Party Libraries
Wefind that apps may not intend to be diehard. Their diehard

behaviors could come from third-party libraries. A summary

of third-party libraries having diehard behaviors is listed

in 5. To our surprise, we observe dedicated libraries that

implement state-of-the-art diehard techniques and their pri-

mary goal is to keep apps long-running. For example, a li-

brary with package name com.daemon.keepalive is found

in several high-rating apps with millions of installs such as

Smart Cooler [20], RAM Master [19], and SPARK [21]. An

industry-leading Android anti-virus service provider, Qihoo

360, offers a malware scanning library with a diehard ser-

vice com.qihoo.magic.service.KeepLiveService. This
service appears in Qihoo family apps as well as non-Qihoo

apps such as Super Antivirus Cleaner [23], which has a rat-

ing of 4.7 and more than 10 million installs. We also find

an open-source daemon library that offers out-of-the-box

diehard components [12].

Tencent Xinge is one of the most popular message push

SDKs. It actively queries installed apps on the device and

looks for apps that also have the same SDK integrated, i.e.,
apps that also listen to the broadcast com.tencent.android.
tpush.action.SDK. If another app is found to have Xinge

SDK but is not currently alive, it tries to launch that app in

various ways, one of which is presented in Figure 14. The

built-in command line tool, am, is called to start the target

Xinge services in other apps.

Figure 14. Tencent message push SDK has diehard behavior

that wakes up all its services using shell command am that can
bypass background execution limitation. Code decompiled

from version 4.0.3 jar file using JD-GUI.

Third-party libraries, in particular, those exhibiting

diehard behaviors, are potentially leaking user privacy. SDKs

such as Tencent Xinge, JPush, Xiaomi Push asks for sensi-

tive permissions, including reading phone state, accessing

WiFi/network state, accessing fine location, and accessing

coarse location.
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Table 5. Third-party libraries coming with diehard behaviors, their purposes, techniques they use, and whether they request

sensitive permissions.

SDK Purpose Techniques Sensitive Permissions

Tencent Xinge Message push & Notification

Native watchdog, foreground service, sticky service,

system events, inter-app wakeup

Yes

JPush Message push & Notification Foreground service, floating activity, inter-app wakeup Yes

iGenxin Notification

Scheduled tasks, sticky service, foreground service,

system events, watchdog

Yes

Baidu Share Cross-app data sharing

Native watchdog, sticky service, foreground service,

system events, inter-app wakeup

Yes

Xiaomi Push Message push & Notification

Sticky service, foreground service,

system events, inter-app wakeup

Yes

Eguan Monitoring

Scheduled tasks, sticky service,

foreground service, system events

No

EMChat Notification

Scheduled tasks, sticky service, foreground service,

system events, inter-app wakeup

Yes

Jiubang Notification

Scheduled tasks, sticky service, foreground service,

system events, watchdog

Yes

5.4.3 A Real-World ALG
Figure 15 presents a real-world ALG visualization from 10

apps. It shows the interactions between apps and app com-

ponents, as well as lifecycle events. We find that Baidu apps

perform cross-app wakeup intensively. Tencent apps tend

to utilize framework services to be diehard. The ES File Ex-

plorer app (package name com.estrong.android.app) and
Tencent Input app (package name com.tencent.qqim) have
watchdog services.

6 Discussion
While this work presents a fine-grained lifecycle control

framework and makes the first step toward understanding

diehard behaviors, there are limitations we plan to address

in the future. First, we collected apps from Google Play and

only one third-party market, which might lead to biases in

results. We plan to do a larger scale study across multiple app

markets. Second, due to the nature of runtime analysis, the

framework cannot capture potential lifecycle events that are

not triggered by the user, therefore the completeness of the

ALG is not guaranteed. Third, a user study could be helpful

for us to design better APIs for empowering app developers.

As the wearable platforms become increasingly popular, we

also plan to implement the framework on the Android Wear

platform and investigate diehard behaviors of wear apps.

Legitimacy of diehard behaviors. We acknowledge that

apps may have legitimate reasons for being diehard. For

instance, a fitness app has to monitor user activities and

locations constantly. However, we argue that apps should

more gracefully achieve long-running and clearly indicate

their background activities using Android recommended

approaches, instead of abusing app lifecycle or gaming the

system. Our proposed framework provides foundations for

developing robust diehard behavior detection and restriction

mechanisms. Device vendors and developers can leverage the

ALG and event contexts our framework provides to realize

a crowd-sourced tool that can identify the legitimacy of

diehard behaviors with a large dataset.

Background-running apps on iOS. Unlike Android, back-
ground processing in iOS is highly regulated. Long-running

tasks require specific permissions to run in the background

without being shut down, and only specific app types are

allowed to do so [6]. Additionally, all iOS apps submitted to

the App Store are manually reviewed to ensure that they do

not violate Apple’s guidelines. Developers are required to

present a compelling reason for background activities. We

argue that Android cannot simply adopt the iOS approach to

restricting background executions. Android is meant to be

a customizable platform and the whole ecosystem is open.

Developers are believed to be responsible and follow the

guidelines, which is unfortunately not true.

Circumventions.We place hooks into the system based on

our understanding of current system implementation. In the

future, new Android APIs might be introduced that could be

abused to realize diehard behaviors and circumvent being

captured by ALG. We argue that our framework is extensible

and ALG can also be extended in order to adapt to future

Android frameworks. As long as we build a runtime ALG, we

can always rely on it and upgrade the detection algorithms.

Lessons learned. Benign diehard apps call for system-level

support of long-running mechanisms that are transparent

and controllable to users. Third-party libraries should be bet-

ter inspected before being integrated, and library providers

are supposed to provide configuration options to app de-

velopers. Nevertheless, it is challenging to prevent abuses

of legitimate functionalities, because oftentimes this is a

cat-and-mouse game and API designers are unaware of the
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Figure 15. The topmost level (i.e., cross-app ICC graph) of a real ALG visualized by Graphviz. com.estrongs.android.app
and com.tencent.qqim are further inspected with one of their intra-app ICC graphs.

potential side effects. Android API designers can leverage our

framework to fix loopholes and better manage app lifecycle.

7 Related Work
App lifecycle control mechanisms and diehard behaviors

have not been studied before. Previous efforts in identifying

and addressing battery drain problems [29, 31, 32, 35] mainly

focus on bugs instead of intentional app behaviors and lack

the insights into app lifecycle as a whole.

Chen et. al. present a study on low-level background ac-

tivities of apps by looking into CPU idle and busy time [29].

They conducted a large-scale measurement study perform-

ing in-depth analysis of background app activities, quantified

the amount of battery drain, and developed a metric called

background to foreground correlation to measure the use-

fulness of background activities. Our work is different than

theirs in two aspects. (1) Our focus is an important root cause

of energy drain, i.e., behaviors that make apps long-running

and evade being killed. (2) We not only look at individual

apps but also interactions among apps. There is also work

that helps understand where and how energy drain hap-

pens in smartphones [28]. The authors developed a hybrid

utilization-based and finite state machine based model that

accurately estimates energy breakdown among activities

and phone components. Pathak et. al. perform a character-

ization study of no-sleep energy bugs in smartphone apps

and proposes a compile-time solution to automatically detect

no-sleep bugs [33]. This work focuses on a different prob-

lem. While they look at bugs that may cause unusual energy

drain, we study intentional behaviors of apps that keep them

long-running in the background. To mitigate no-sleep bugs,

Vekris et. al. [35] implement a tool that verifies the absence

of this kind of energy bugs with regard to a set of WakeLock

specific policies using a precise, inter-procedural data flow

analysis framework to enforce them. Tamer [32] is an OS

mechanism that interposes on events and signals that cause

task wake-ups and allows for their detailed monitoring, fil-

tering, and rate-limiting. It helps reduce battery drain in

scenarios involving popular apps with background tasks.

8 Conclusion
In this paper, we present a fine-grained app lifecycle con-

trol framework that leverages app lifecycle graph (ALG) to

accurately describe app lifecycles. We overcome challenges

such as caller component identification, nondisruptive app

control. App study results suggest that diehard behaviors are

common in apps from both Google Play and a third-party

market. Evaluations show that our framework is capable of

efficiently capturing app lifecycle events, imposing negligible

performance overhead. The proposed framework provides

easy-to-use APIs on which new features can be developed.

It empowers device vendors and app developers to leverage

the ALG and event contexts to realize accurate detection of

diehard behaviors and component-level, fine-grained control

on app lifecycle.
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