
A Lightweight Framework for Fine-Grained
Lifecycle Control of Android Applications

Yuru Shao1, Ruowen Wang2, Xun Chen2, Ahmed M. Azab2, Z. Morley Mao1

1University of Michigan 2Samsung Research America

Presenter: Xiao Zhu (University of Michigan)

Diehard apps

● Some apps are hard to kill

“Close all” cannot kill all running apps
2

Diehard apps

● Even if they get killed they manage to auto restart

3

Diehard apps implications

● Battery drain
● Performance degradation

● Reasons for being diehard
○ Bad engineering
○ Intended functionality: could be legit or illegit

4

Coarse-grained app lifecycle control

Why can apps be hard to kill?

● An app consists of a set of components
○ Activity: a component that represents visible UI that users can see and interact with
○ Service: a component that performs a longer-running operation while the app is not

interacting with the user

● Services can be background for foreground
○ System considers foreground services to be more important to users

● “Close all” tries to stop all visible components, i.e., activities

5

Coarse-grained app lifecycle control

Why can apps be hard to kill?

● Before being killed, a component gets notified
○ onStop()/onDestory() callbacks, giving the component

a chance to die gracefully
○ Or to revive stealthily

HummingBad malware

6

Diehard techniques abuse
1. Foreground service
2. Floating view
3. Native process

Coarse-grained app lifecycle control

Why can apps auto restart?

● Inter-component communications (ICC) are common
○ Enable easy interactions among apps
○ Open doors for abuses

● Auto-run techniques abuse
○ Sticky service
○ System events
○ Watchdog
○ Sync service and job service
○ Cross-app wakeup

7

Coarse-grained app lifecycle control

● Background Exec Limit were introduced in Android 8.0

● But “Background Exec Limit” has limitations
○ Too coarse-grained: per app, not per component
○ Apps can invisibly run in foreground
○ Inter-app wakeup is common among apps integrating the same 3rd-party libs

8

Key insights

● Diehard behaviors create interdependence between:
○ component callbacks
○ app components
○ different apps

● Such interdependence can be captured as cycles on a graph

9

App lifecycle graph (ALG)

● Has multiple levels that track inner- and inter- app interactions
● Annotated with attributes that provide event contexts

{

 "Background": {

 "Intervals": [200, …]

 },

 "Foreground": {

 "Intervals": [100, …]

 },

 “Operation”: “bind”,

 "UserInitiated": 2,

 "Enabled": true

}

10

A component-level lifecycle control framework

● Maintains a global ALG in memory to enable efficient graph operations
● Installs async hooks to monitor all ICC events and collects ICC info
● Provides query & control capabilities as APIs

Apps

System
services

11

A component-level lifecycle control framework

Requirements and challenges

● Accurately identifying ICC caller component
○ No existing mechanisms to provide component-level caller info
○ Limited caller app info: only app UID/PID/package name

● Nonblocking, hooks don’t block ongoing operations
○ There’s no single best hook placement strategy for all scenarios

● Nondisruptive, avoid causing app crashes
○ Hard to gracefully shut down apps/components

comp_0

comp_1

Who’s calling comp_1?
comp_1 can only see
the caller app identify.

12

Identifying caller component

● Target component is called by an app, no caller component info provided
● Naïve approach: inspecting call stack when starting an ICC

class MyService extends Service {
 …
 public void onStart() {
 // start a target service
 this.startService(tgtSrvc);
 }
 ...
}

Context.startService(tgtSrvc)

MyService.onStart()

...

MyService call stack

The target component

The method signature of
onStart() tells us the caller
component

ICC

13

Identifying caller component

● Target component is called by an app, no caller component info provided
● Naïve approach: inspecting call stack when starting an ICC

○ Call stack is per thread
○ Doesn’t work if the caller starts a new thread in which the target is called

class MyService extends Service {
 ...
 public void onStart() {
 // start a target service in a new thread
 new Thread() {
 Public void run() {
 MyService.this.startService(tgtSrvc);
 }
 }.start();
 }
 ...
}

New thread call stack

context.startService(tgtSrvc)

Thread.run();

Thread.<init>()

Caller component info
unavailable on the new
thread’s call stack

14

Identifying caller component

● No caller component info provided by the system
● Proposed approach: attaching caller info in the base Service class

class MyService extends Service {
 …
 public void onStart() {
 // start a target service in a new thread
 new Thread() {
 Public void run() {
 MyService.this.startService(tgtSrvc);
 }
 }.start();
 }
 ...
}

startService()

startService() returns

startService() body

android/app/Service.java

Obtain and attach
caller info

Attached caller info will be checked in Activity Manager
Service later, in case an app wants to bypass it. 15

Using event contexts

● ICC event contexts are helpful for distinguishing legit and illegit diehard
behaviors

● Example policy: If a service is in foreground and only started by
non-user-initiated components, then it’s an illegit diehard component

for (String app : listOfApps) {
 AppCompGraph appCompGraph = LMS.getAppCompGraph(app);
 for (Node comp : appCompGraph.Nodes) {
 if (comp.getProperty(“foreground”) == true) {
 // check all incoming edges’ “userInitiated” property
 // if all > 0, this component is a diehard service
 }
 }
}

16

Results: overhead

● Evaluated on a Nexus 6P (3GB RAM) running Android 8.0
● The framework incurs low overhead on app launch time and system boot time

17

Measured with Android activity manager service
● < 0.1s app launching delay
● ~2.5s system boot delay

Results: overhead

● Evaluated on a Nexus 6P (3GB RAM) running Android 8.0
● The framework incurs negligible overhead on CPU and memory usage

18

● ~5% additional CPU usage during initialization
● ~4.5MB (0.15%) additional memory usage

Results: a restriction rule

● Disable background auto-start services by cutting off background edges
● 7 Baidu family apps and 3 Tencent apps installed
● Left phone idle after reboot

19

Summary

● Diehard apps abusing system features is a known but previously unstudied
problem

○ Apps from 3rd-party markets tend to be more aggressive

● Propose ALG for complete, precise app lifecycle description
○ Diehard behavior analysis and detection problems are transformed into graph problems

● Leveraging ALG, a lightweight framework is presented to provide fine-grained
lifecycle enforcement

● Future work includes using user feedback to build better policies for restricting
diehard behaviors

20

Thank you!

21

Results: ALG example

22

Results: diehard apps

● 17,598 apps from Google Play and a 3rd-party market
● 13.1% Google Play apps and 16.3% 3rd-party market apps have foreground

services
● Apps from the 3rd-party market are more aggressive

23

