A Lightweight Framework for Fine-Grained
Lifecycle Control of Android Applications

Yuru Shao'!, Ruowen Wang?, Xun Chen?, Ahmed M. Azab?, Z. Morley Mao'
'University of Michigan 2Samsung Research America

Presenter: Xiao Zhu (University of Michigan)



Diehard apps

e Some apps are hard to kill

§ GooglePlay  taskkiler n

Search  Android Apps v All prices v All ratings v

My apps
Shop Apps
Games
<\ ramiy Y A 2N
Editors' Choice - \ I
J Q& ‘#8 | U :
Advanced Task V Task Manager (T¢ Task Killer ES Task Manager Fast Task Killer GO Cleaner & Tas
INFOLIFE LLC Rhythm Software AndroidRock ES Global HDM Dev Team GOMO Limited
Accotnt * K kA *k ok ke * Kk Kk y *k kK *k ok k 1S322
My subscriptions

Redeem
=S NN W -
ot S—r i > | &

CLOSE ALL “Close all” cannot kill all running apps




Diehard apps

e FEven ifthey get killed they manage to auto restart

How To Disable Auto-Starting Apps On Android | PCsteps.com
https://www.pcsteps.com/16385-how-to-disable-auto-starting-apps-on-android/ v
Yook %k Rating: 5 - 3 votes

Mar 28, 2018 - How To Disable Auto-Starting Apps On Android .... When we run an app, it will
automatically "kill" the one we were using before that, instead of ...

Why should we prevent ... - Stop auto-starting apps on ...

How to stop apps from running in the background on Android ...
https://www.androidpit.com/how-to-stop-apps-running-in-the-background-on-android v

Aug 1, 2018 - To stop an app manually via the processes list, head to Settings > Developer Options >
Processes (or Running Services) and click the Stop button. Voila! To Force Stop or Uninstall an app
manually via the Applications list, head to Settings > Applications > Application manager and select the
app you want to modify.

How to Stop Android Apps From Starting By Themselves
https://www.maketecheasier.com/stop-android-apps-from-starting-by-themselves/ v

Aug 9, 2018 - Here we'll take you through the best methods of stopping your Android apps opening
automatically. Related: How to Stop Pop-ups on Android ...

How To Disable Auto Start Apps in Android Smartphones & Tablet
https://www.theandroidportal.com > How To v

Oct 4, 2017 - You might have noticed when you boot your Android, some apps getting started
automatically. Some apps like Google play services, Amazon ...



Diehard apps implications

e Battery drain
e Performance degradation

e Reasons for being diehard
o Bad engineering
o Intended functionality: could be legit or illegit



Coarse-grained app lifecycle control

Why can apps be hard to kill?

e An app consists of a set of components
o Activity: a component that represents visible Ul that users can see and interact with
o  Service: a component that performs a longer-running operation while the app is not
interacting with the user
e Services can be background for foreground
o  System considers foreground services to be more important to users

e “Close all” tries to stop all visible components, i.e., activities

|”



Coarse-grained app lifecycle control

/

Why can apps be hard to kill?

' 1
|

.

e Before being killed, a component gets notified )

o onStop () /onDestory () callbacks, giving the component -

a chance to die gracefully

o  Or to revive stealthily

s
I 5
|
I
| 12
| 3
4

Diehard techniques abuse
1. Foreground service
2. Floating view

3. Native process

————

// full class game: com.android.Laucher.Se

2| public class S& extends Service {

// onDestroy() callback is always called by
// the system when a service gets killed
public void onDestroy() {

super .onDestroy() ;

// Restart itself (the 2nd argument is the
// target service that will be started).
Intent i = new Intent(this.context, Se.class);
i.setFlags(268435456);
—i metAction (“com. dui—aetiens ;=
li.setAction("com. tdz.action"); |
wtService(D; _ _ _ _ |
/
/

7
/ .
, HummingBad malware



Coarse-grained app lifecycle control

Why can apps auto restart?

e Inter-component communications (ICC) are common
o Enable easy interactions among apps
o  Open doors for abuses

e Auto-run techniques abuse
o  Sticky service

System events

Watchdog

Sync service and job service

Cross-app wakeup

o O O O



Coarse-grained app lifecycle control

e Background Exec Limit were introduced in Android 8.0

e But “Background Exec Limit” has limitations
o Too coarse-grained: per app, not per component

o Apps can invisibly run in foreground
o Inter-app wakeup is common among apps integrating the same 3rd-party libs



Key insights

e Diehard behaviors create interdependence between:
o component callbacks
O  app components
o different apps

e Such interdependence can be captured as cycles on a graph

WatchdogService Android Framework
o (package: android)
Start/bind service Start/bind service e b V\Periodicauy_start
rvicey Register ‘ Register }SyncSemce
JobService SyncService
DiehardService ! " ’

DiehardService

| DiehardSenvice |

Start daemon Start service
Runtime.exec(“/path/to/daemon™) execl(“am start .”)

WatchdogDaemon




{

}

App lifecycle graph (ALG)

e Has multiple levels that track inner- and inter- app interactions
e Annotated with attributes that provide event contexts

(D Cross-app ICC graph node
[ ] Inner-app ICC graph node
@» Component callback graph node

“*~{' Android Framework

"Background": {
"Intervals": [200, ...]
b

"Foreground": {
"Intervals": [100, ...]

}s
“Operation”: “bind”, D f SRRl

"UserInitiated": 2, ) app_2
"Enabled": true app_1 I

10



A component-level lifecycle control framework

e Maintains a global ALG in memory to enable efficient graph operations
e [nstalls async hooks to monitor all ICC events and collects ICC info
e Provides query & control capabilities as APIs

Apps

Lifecycle management

interfaces

Lifecycle manager
client

Context
collector

Runtime ALG

__________________ e e o

System
services

e '

Lifecycle manager |
service

4
v

Lifecycle hooks

System services

1



A component-level lifecycle control framework

Requirements and challenges

Who'’s calling comp_1?
comp_1can only see
the caller app identify.

e Accurately identifying ICC caller component
o No existing mechanisms to provide component-level caller info
o Limited caller app info: only app UID/PID/package name

e Nonblocking, hooks don’t block ongoing operations
o There’s no single best hook placement strategy for all scenarios

e Nondisruptive, avoid causing app crashes @

o Hard to gracefully shut down apps/components

12



|dentifying caller component

e Target componentis called by an app, no caller component info provided
e Naive approach: inspecting call stack when starting an ICC

The target component

class MyService extends Service { /
Context.startService(tgtSrvc)
public void onStart() { MyService.onStart()
// start a target service \ ICC
} this.startService(tgtSrvc); MyService\caII stack
} The method signature of

onStart() tells us the caller
component

13



|dentifying caller component

e Target componentis called by an app, no caller component info provided

o Call stack is per thread
o Doesn’t work if the caller starts a new thread in which the target is called

class MyService extends Service { Caller component info

unavailable on the new

public void onStart() { thread’s call stack

// start a target service in a new thread

new Thread() {
Public void run() { context.startService(tgtSrvc)
MyService.this.startService(tgtSrvc); Thread.run();
} Thread.<init>()
}.start(); New thread call stack

}



|dentifying caller component

e No caller component info provided by the system
e Proposed approach: attaching caller info in the base Service class

class MyService extends Service {

public void onStart() {
// start a target service in a new thread
new Thread() {
Public void run() {
MyService.this.startService(tgtSrvc);

}
}.start();

}

.

/ android/app/Service.java

startService()
/

l

startService() body

l

\\xstartService() returns

Obtain and attach
caller info

} o Attached caller info will be checked in Activity Manager
Service later, in case an app wants to bypass it. 15



Using event contexts

e |CC event contexts are helpful for distinguishing legit and illegit diehard
behaviors

e Example policy: If a service is in foreground and only started by
non-user-initiated components, then it's an illegit diehard component

for (String app : listOfApps) {
AppCompGraph appCompGraph = LMS.getAppCompGraph(app);
for (Node comp : appCompGraph.Nodes) {
if (comp.getProperty(“foreground”) == true) {
// check all incoming edges’ “userInitiated” property
// if all > @, this component is a diehard service

}
}
}

16



Results: overhead

Evaluated on a Nexus 6P (3GB RAM) running Android 8.0
The framework incurs low overhead on app launch time and system boot time

2r

¢
T »
~34
%18t : ) T
<)) 1 S o |
£1.6 ! Ea !
S1.4 " 3
5 | ; < 30 .
K12} I i g I -+~
& 3 ' 2 4 =
o
08" . . . : -
Framework w/ ALG AOSP Framework w/ ALG AOSP

Measured with Android activity manager service
e <O0.1s app launching delay
e "2.5ssystem boot delay

17



Results: overhead

e [Evaluated on a Nexus 6P (3GB RAM) running Android 8.0
e The framework incurs negligible overhead on CPU and memory usage

40 , , 52 9.5 . .
P » Framework w/ ALG > ° Framework w/ ALG
> R + AOSP S < AOSP
o = T
O 30 © g}
- £
g) — & -
< D o -
D20+ e e ———— —
| 585/ S
= ke
2 £
D10+ Q
0 2
A A A 0 8 L L "
0 50 100 150 200 0 50 100 150 200
Time after system reboot (s) Time after system reboot (s)

e "“5% additional CPU usage during initialization
e "4 5MB (0.15%) additional memory usage



Results: a restriction rule

e Disable background auto-start services by cutting off background edges
e / Baidu family apps and 3 Tencent apps installed
e Left phone idle after reboot

100 . . ~ 40 . - .
-=-w/o restriction -e-w/0 restriction
%8 ——w/ restrction = ——w/ restriction
= 30
e 2
o 96 L
3 =
94 L — 20 \
g g
‘(6 |
m 92} g
210
9 t
88 ;‘:‘:"-

i 4 0 2 ” &=, ATATA
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time after reboot (min) Time after reboot (min)



Summary

e Diehard apps abusing system features is a known but previously unstudied

problem
o Apps from 3rd-party markets tend to be more aggressive

e Propose ALG for complete, precise app lifecycle description
o Diehard behavior analysis and detection problems are transformed into graph problems

e |everaging ALG, a lightweight framework is presented to provide fine-grained
lifecycle enforcement

e Future work includes using user feedback to build better policies for restricting

diehard behaviors .



Thank you!

21



Results: ALG example
£ e >

com.estrongs.android.app
I

com.baidu.searchbox

bind register jregister
(job) (job)

com.tencent.news

com.baidu.browser

com.baidu.BaiduMap

FexApplication - g ,®

’
”
a4
start start 4
¥
FileScannerService start LocalMService JobSchedulerSerivce QQpimAllStartUpReceiver SyncService
ind start Start NA émibind /

FileMonitorService LocalCService WsBackgroungService

22



Results: diehard apps

e 17,598 apps from Google Play and a 3rd-party market

e 13.1% Google Play apps and 16.3% 3rd-party market apps have foreground
services

e Apps from the 3rd-party market are more aggressive

1 T T : 10 S —
p 9t I Google Play
08¢ ,I ‘\ 8t B 3rd-party Market |
I 1 74t
| 1 o
0.6 B — 6!
a : —Google Play |
o 1R —3rd-Party Market < °
004 ‘\ II ; . arty CL 4 o\o 4+
~ 3' ——
0.2 2| o7 T~
1 N
0 : " i i 4 0 S ._//;
0 1 2 3 4 5 6 7 8 0 1 234 5_6_72-8"9 10

# Diehard techniques # Foreground services

23



